Classtools

  • Home
  • Tabel van Mendeljev

1

H

Hydrogen

1.008

H

Hydrogen

1.008

diatomic nonmetal

Appearance: colorless gas

Boiling Point: 20.271

Density: 0.08988

Phase: Gas

Discovered by: Henry Cavendish

Named by: Antoine Lavoisier

Summary: Hydrogen is a chemical element with chemical symbol H and atomic number 1. With an atomic weight of 1.00794 u, hydrogen is the lightest element on the periodic table. Its monatomic form (H) is the most abundant chemical substance in the Universe, constituting roughly 75% of all baryonic mass.

2

He

Helium

4.0026022

He

Helium

4.0026022

noble gas

Appearance: colorless gas, exhibiting a red-orange glow when placed in a high-voltage electric field

Boiling Point: 4.222

Density: 0.1786

Phase: Gas

Discovered by: Pierre Janssen

Summary: Helium is a chemical element with symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas that heads the noble gas group in the periodic table. Its boiling and melting points are the lowest among all the elements.

3

Li

Lithium

6.94

Li

Lithium

6.94

alkali metal

Appearance: silvery-white

Boiling Point: 1603

Density: 0.534

Phase: Solid

Discovered by: Johan August Arfwedson

Summary: Lithium (from Greek:λίθος lithos, "stone") is a chemical element with the symbol Li and atomic number 3. It is a soft, silver-white metal belonging to the alkali metal group of chemical elements. Under standard conditions it is the lightest metal and the least dense solid element.

4

Be

Beryllium

9.01218315

Be

Beryllium

9.01218315

alkaline earth metal

Appearance: white-gray metallic

Boiling Point: 2742

Density: 1.85

Phase: Solid

Discovered by: Louis Nicolas Vauquelin

Summary: Beryllium is a chemical element with symbol Be and atomic number 4. It is created through stellar nucleosynthesis and is a relatively rare element in the universe. It is a divalent element which occurs naturally only in combination with other elements in minerals.

5

B

Boron

10.81

B

Boron

10.81

metalloid

Appearance: black-brown

Boiling Point: 4200

Density: 2.08

Phase: Solid

Discovered by: Joseph Louis Gay-Lussac

Summary: Boron is a metalloid chemical element with symbol B and atomic number 5. Produced entirely by cosmic ray spallation and supernovae and not by stellar nucleosynthesis, it is a low-abundance element in both the Solar system and the Earth's crust. Boron is concentrated on Earth by the water-solubility of its more common naturally occurring compounds, the borate minerals.

6

C

Carbon

12.011

C

Carbon

12.011

polyatomic nonmetal

Density: 1.821

Phase: Solid

Discovered by: Ancient Egypt

Summary: Carbon (from Latin:carbo "coal") is a chemical element with symbol C and atomic number 6. On the periodic table, it is the first (row 2) of six elements in column (group) 14, which have in common the composition of their outer electron shell. It is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds.

7

N

Nitrogen

14.007

N

Nitrogen

14.007

diatomic nonmetal

Appearance: colorless gas, liquid or solid

Boiling Point: 77.355

Density: 1.251

Phase: Gas

Discovered by: Daniel Rutherford

Named by: Jean-Antoine Chaptal

Summary: Nitrogen is a chemical element with symbol N and atomic number 7. It is the lightest pnictogen and at room temperature, it is a transparent, odorless diatomic gas. Nitrogen is a common element in the universe, estimated at about seventh in total abundance in the Milky Way and the Solar System.

8

O

Oxygen

15.999

O

Oxygen

15.999

diatomic nonmetal

Boiling Point: 90.188

Density: 1.429

Phase: Gas

Discovered by: Carl Wilhelm Scheele

Named by: Antoine Lavoisier

Summary: Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the chalcogen group on the periodic table and is a highly reactive nonmetal and oxidizing agent that readily forms compounds (notably oxides) with most elements. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium.

9

F

Fluorine

18.9984031636

F

Fluorine

18.9984031636

diatomic nonmetal

Boiling Point: 85.03

Density: 1.696

Phase: Gas

Discovered by: André-Marie Ampère

Named by: Humphry Davy

Summary: Fluorine is a chemical element with symbol F and atomic number 9. It is the lightest halogen and exists as a highly toxic pale yellow diatomic gas at standard conditions. As the most electronegative element, it is extremely reactive:almost all other elements, including some noble gases, form compounds with fluorine.

10

Ne

Neon

20.17976

Ne

Neon

20.17976

noble gas

Appearance: colorless gas exhibiting an orange-red glow when placed in a high voltage electric field

Boiling Point: 27.104

Density: 0.9002

Phase: Gas

Discovered by: Morris Travers

Summary: Neon is a chemical element with symbol Ne and atomic number 10. It is in group 18 (noble gases) of the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air.

11

Na

Sodium

22.989769282

Na

Sodium

22.989769282

alkali metal

Appearance: silvery white metallic

Boiling Point: 1156.09

Density: 0.968

Phase: Solid

Discovered by: Humphry Davy

Summary: Sodium /ˈsoʊdiəm/ is a chemical element with symbol Na (from Ancient Greek Νάτριο) and atomic number 11. It is a soft, silver-white, highly reactive metal. In the Periodic table it is in column 1 (alkali metals), and shares with the other six elements in that column that it has a single electron in its outer shell, which it readily donates, creating a positively charged atom - a cation.

12

Mg

Magnesium

24.305

Mg

Magnesium

24.305

alkaline earth metal

Appearance: shiny grey solid

Boiling Point: 1363

Density: 1.738

Phase: Solid

Discovered by: Joseph Black

Summary: Magnesium is a chemical element with symbol Mg and atomic number 12. It is a shiny gray solid which bears a close physical resemblance to the other five elements in the second column (Group 2, or alkaline earth metals) of the periodic table:they each have the same electron configuration in their outer electron shell producing a similar crystal structure. Magnesium is the ninth most abundant element in the universe.

13

Al

Aluminium

26.98153857

Al

Aluminium

26.98153857

post-transition metal

Appearance: silvery gray metallic

Boiling Point: 2743

Density: 2.7

Phase: Solid

Named by: Humphry Davy

Summary: Aluminium (or aluminum; see different endings) is a chemical element in the boron group with symbol Al and atomic number 13. It is a silvery-white, soft, nonmagnetic, ductile metal. Aluminium is the third most abundant element (after oxygen and silicon), and the most abundant metal, in the Earth's crust.

14

Si

Silicon

28.085

Si

Silicon

28.085

metalloid

Appearance: crystalline, reflective with bluish-tinged faces

Boiling Point: 3538

Density: 2.329

Phase: Solid

Discovered by: Jöns Jacob Berzelius

Named by: Thomas Thomson (chemist)

Summary: Silicon is a chemical element with symbol Si and atomic number 14. It is a tetravalent metalloid, more reactive than germanium, the metalloid directly below it in the table. Controversy about silicon's character dates to its discovery.

15

P

Phosphorus

30.9737619985

P

Phosphorus

30.9737619985

polyatomic nonmetal

Appearance: colourless, waxy white, yellow, scarlet, red, violet, black

Density: 1.823

Phase: Solid

Discovered by: Hennig Brand

Summary: Phosphorus is a chemical element with symbol P and atomic number 15. As an element, phosphorus exists in two major forms—white phosphorus and red phosphorus—but due to its high reactivity, phosphorus is never found as a free element on Earth. Instead phosphorus-containing minerals are almost always present in their maximally oxidised state, as inorganic phosphate rocks.

16

S

Sulfur

32.06

S

Sulfur

32.06

polyatomic nonmetal

Appearance: lemon yellow sintered microcrystals

Boiling Point: 717.8

Density: 2.07

Phase: Solid

Discovered by: Ancient china

Summary: Sulfur or sulphur (see spelling differences) is a chemical element with symbol S and atomic number 16. It is an abundant, multivalent non-metal. Under normal conditions, sulfur atoms form cyclic octatomic molecules with chemical formula S8.

17

Cl

Chlorine

35.45

Cl

Chlorine

35.45

diatomic nonmetal

Appearance: pale yellow-green gas

Boiling Point: 239.11

Density: 3.2

Phase: Gas

Discovered by: Carl Wilhelm Scheele

Summary: Chlorine is a chemical element with symbol Cl and atomic number 17. It also has a relative atomic mass of 35.5. Chlorine is in the halogen group (17) and is the second lightest halogen following fluorine.

18

Ar

Argon

39.9481

Ar

Argon

39.9481

noble gas

Appearance: colorless gas exhibiting a lilac/violet glow when placed in a high voltage electric field

Boiling Point: 87.302

Density: 1.784

Phase: Gas

Discovered by: Lord Rayleigh

Summary: Argon is a chemical element with symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most common gas in the Earth's atmosphere, at 0.934% (9,340 ppmv), making it over twice as abundant as the next most common atmospheric gas, water vapor (which averages about 4000 ppmv, but varies greatly), and 23 times as abundant as the next most common non-condensing atmospheric gas, carbon dioxide (400 ppmv), and more than 500 times as abundant as the next most common noble gas, neon (18 ppmv).

19

K

Potassium

39.09831

K

Potassium

39.09831

alkali metal

Appearance: silvery gray

Boiling Point: 1032

Density: 0.862

Phase: Solid

Discovered by: Humphry Davy

Summary: Potassium is a chemical element with symbol K (derived from Neo-Latin, kalium) and atomic number 19. It was first isolated from potash, the ashes of plants, from which its name is derived. In the Periodic table, potassium is one of seven elements in column (group) 1 (alkali metals):they all have a single valence electron in their outer electron shell, which they readily give up to create an atom with a positive charge - a cation, and combine with anions to form salts.

20

Ca

Calcium

40.0784

Ca

Calcium

40.0784

alkaline earth metal

Boiling Point: 1757

Density: 1.55

Phase: Solid

Discovered by: Humphry Davy

Summary: Calcium is a chemical element with symbol Ca and atomic number 20. Calcium is a soft gray alkaline earth metal, fifth-most-abundant element by mass in the Earth's crust. The ion Ca2+ is also the fifth-most-abundant dissolved ion in seawater by both molarity and mass, after sodium, chloride, magnesium, and sulfate.

21

Sc

Scandium

44.9559085

Sc

Scandium

44.9559085

transition metal

Appearance: silvery white

Boiling Point: 3109

Density: 2.985

Phase: Solid

Discovered by: Lars Fredrik Nilson

Summary: Scandium is a chemical element with symbol Sc and atomic number 21. A silvery-white metallic d-block element, it has historically been sometimes classified as a rare earth element, together with yttrium and the lanthanoids. It was discovered in 1879 by spectral analysis of the minerals euxenite and gadolinite from Scandinavia.

22

Ti

Titanium

47.8671

Ti

Titanium

47.8671

transition metal

Appearance: silvery grey-white metallic

Boiling Point: 3560

Density: 4.506

Phase: Solid

Discovered by: William Gregor

Named by: Martin Heinrich Klaproth

Summary: Titanium is a chemical element with symbol Ti and atomic number 22. It is a lustrous transition metal with a silver color, low density and high strength. It is highly resistant to corrosion in sea water, aqua regia and chlorine.

23

V

Vanadium

50.94151

V

Vanadium

50.94151

transition metal

Appearance: blue-silver-grey metal

Boiling Point: 3680

Density: 6

Phase: Solid

Discovered by: Andrés Manuel del Río

Named by: Isotopes of vanadium

Summary: Vanadium is a chemical element with symbol V and atomic number 23. It is a hard, silvery grey, ductile and malleable transition metal. The element is found only in chemically combined form in nature, but once isolated artificially, the formation of an oxide layer stabilizes the free metal somewhat against further oxidation.

24

Cr

Chromium

51.99616

Cr

Chromium

51.99616

transition metal

Appearance: silvery metallic

Boiling Point: 2944

Density: 7.19

Phase: Solid

Discovered by: Louis Nicolas Vauquelin

Summary: Chromium is a chemical element with symbol Cr and atomic number 24. It is the first element in Group 6. It is a steely-gray, lustrous, hard and brittle metal which takes a high polish, resists tarnishing, and has a high melting point.

25

Mn

Manganese

54.9380443

Mn

Manganese

54.9380443

transition metal

Appearance: silvery metallic

Boiling Point: 2334

Density: 7.21

Phase: Solid

Discovered by: Torbern Olof Bergman

Summary: Manganese is a chemical element with symbol Mn and atomic number 25. It is not found as a free element in nature; it is often found in combination with iron, and in many minerals. Manganese is a metal with important industrial metal alloy uses, particularly in stainless steels.

26

Fe

Iron

55.8452

Fe

Iron

55.8452

transition metal

Appearance: lustrous metallic with a grayish tinge

Boiling Point: 3134

Density: 7.874

Phase: Solid

Discovered by: 5000 BC

Summary: Iron is a chemical element with symbol Fe (from Latin:ferrum) and atomic number 26. It is a metal in the first transition series. It is by mass the most common element on Earth, forming much of Earth's outer and inner core.

27

Co

Cobalt

58.9331944

Co

Cobalt

58.9331944

transition metal

Appearance: hard lustrous gray metal

Boiling Point: 3200

Density: 8.9

Phase: Solid

Discovered by: Georg Brandt

Summary: Cobalt is a chemical element with symbol Co and atomic number 27. Like nickel, cobalt in the Earth's crust is found only in chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal.

28

Ni

Nickel

58.69344

Ni

Nickel

58.69344

transition metal

Appearance: lustrous, metallic, and silver with a gold tinge

Boiling Point: 3003

Density: 8.908

Phase: Solid

Discovered by: Axel Fredrik Cronstedt

Summary: Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel belongs to the transition metals and is hard and ductile.

29

Cu

Copper

63.5463

Cu

Copper

63.5463

transition metal

Appearance: red-orange metallic luster

Boiling Point: 2835

Density: 8.96

Phase: Solid

Discovered by: Middle East

Summary: Copper is a chemical element with symbol Cu (from Latin:cuprum) and atomic number 29. It is a soft, malleable and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a reddish-orange color.

30

Zn

Zinc

65.382

Zn

Zinc

65.382

transition metal

Appearance: silver-gray

Boiling Point: 1180

Density: 7.14

Phase: Solid

Discovered by: India

Summary: Zinc, in commerce also spelter, is a chemical element with symbol Zn and atomic number 30. It is the first element of group 12 of the periodic table. In some respects zinc is chemically similar to magnesium:its ion is of similar size and its only common oxidation state is +2.

31

Ga

Gallium

69.7231

Ga

Gallium

69.7231

post-transition metal

Appearance: silver-white

Boiling Point: 2673

Density: 5.91

Phase: Solid

Discovered by: Lecoq de Boisbaudran

Summary: Gallium is a chemical element with symbol Ga and atomic number 31. Elemental gallium does not occur in free form in nature, but as the gallium(III) compounds that are in trace amounts in zinc ores and in bauxite. Gallium is a soft, silvery metal, and elemental gallium is a brittle solid at low temperatures, and melts at 29.76 °C (85.57 °F) (slightly above room temperature).

32

Ge

Germanium

72.6308

Ge

Germanium

72.6308

metalloid

Appearance: grayish-white

Boiling Point: 3106

Density: 5.323

Phase: Solid

Discovered by: Clemens Winkler

Summary: Germanium is a chemical element with symbol Ge and atomic number 32. It is a lustrous, hard, grayish-white metalloid in the carbon group, chemically similar to its group neighbors tin and silicon. Purified germanium is a semiconductor, with an appearance most similar to elemental silicon.

33

As

Arsenic

74.9215956

As

Arsenic

74.9215956

metalloid

Appearance: metallic grey

Density: 5.727

Phase: Solid

Discovered by: Bronze Age

Summary: Arsenic is a chemical element with symbol As and atomic number 33. Arsenic occurs in many minerals, usually in conjunction with sulfur and metals, and also as a pure elemental crystal. Arsenic is a metalloid.

34

Se

Selenium

78.9718

Se

Selenium

78.9718

polyatomic nonmetal

Appearance: black, red, and gray (not pictured) allotropes

Boiling Point: 958

Density: 4.81

Phase: Solid

Discovered by: Jöns Jakob Berzelius

Summary: Selenium is a chemical element with symbol Se and atomic number 34. It is a nonmetal with properties that are intermediate between those of its periodic table column-adjacent chalcogen elements sulfur and tellurium. It rarely occurs in its elemental state in nature, or as pure ore compounds.

35

Br

Bromine

79.904

Br

Bromine

79.904

diatomic nonmetal

Boiling Point: 332

Density: 3.1028

Phase: Liquid

Discovered by: Antoine Jérôme Balard

Summary: Bromine (from Ancient Greek:βρῶμος, brómos, meaning "stench") is a chemical element with symbol Br, and atomic number 35. It is a halogen. The element was isolated independently by two chemists, Carl Jacob Löwig and Antoine Jerome Balard, in 1825–1826.

36

Kr

Krypton

83.7982

Kr

Krypton

83.7982

noble gas

Appearance: colorless gas, exhibiting a whitish glow in a high electric field

Boiling Point: 119.93

Density: 3.749

Phase: Gas

Discovered by: William Ramsay

Summary: Krypton (from Greek:κρυπτός kryptos "the hidden one") is a chemical element with symbol Kr and atomic number 36. It is a member of group 18 (noble gases) elements. A colorless, odorless, tasteless noble gas, krypton occurs in trace amounts in the atmosphere, is isolated by fractionally distilling liquefied air, and is often used with other rare gases in fluorescent lamps.

37

Rb

Rubidium

85.46783

Rb

Rubidium

85.46783

alkali metal

Appearance: grey white

Boiling Point: 961

Density: 1.532

Phase: Solid

Discovered by: Robert Bunsen

Summary: Rubidium is a chemical element with symbol Rb and atomic number 37. Rubidium is a soft, silvery-white metallic element of the alkali metal group, with an atomic mass of 85.4678. Elemental rubidium is highly reactive, with properties similar to those of other alkali metals, such as very rapid oxidation in air.

38

Sr

Strontium

87.621

Sr

Strontium

87.621

alkaline earth metal

Boiling Point: 1650

Density: 2.64

Phase: Solid

Discovered by: William Cruickshank (chemist)

Summary: Strontium is a chemical element with symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white or yellowish metallic element that is highly reactive chemically. The metal turns yellow when it is exposed to air.

39

Y

Yttrium

88.905842

Y

Yttrium

88.905842

transition metal

Appearance: silvery white

Boiling Point: 3203

Density: 4.472

Phase: Solid

Discovered by: Johan Gadolin

Summary: Yttrium is a chemical element with symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and it has often been classified as a "rare earth element". Yttrium is almost always found combined with the lanthanides in rare earth minerals and is never found in nature as a free element.

40

Zr

Zirconium

91.2242

Zr

Zirconium

91.2242

transition metal

Appearance: silvery white

Boiling Point: 4650

Density: 6.52

Phase: Solid

Discovered by: Martin Heinrich Klaproth

Summary: Zirconium is a chemical element with symbol Zr and atomic number 40. The name of zirconium is taken from the name of the mineral zircon, the most important source of zirconium. The word zircon comes from the Persian word zargun زرگون, meaning "gold-colored".

41

Nb

Niobium

92.906372

Nb

Niobium

92.906372

transition metal

Appearance: gray metallic, bluish when oxidized

Boiling Point: 5017

Density: 8.57

Phase: Solid

Discovered by: Charles Hatchett

Summary: Niobium, formerly columbium, is a chemical element with symbol Nb (formerly Cb) and atomic number 41. It is a soft, grey, ductile transition metal, which is often found in the pyrochlore mineral, the main commercial source for niobium, and columbite. The name comes from Greek mythology:Niobe, daughter of Tantalus since it is so similar to tantalum.

42

Mo

Molybdenum

95.951

Mo

Molybdenum

95.951

transition metal

Appearance: gray metallic

Boiling Point: 4912

Density: 10.28

Phase: Solid

Discovered by: Carl Wilhelm Scheele

Summary: Molybdenum is a chemical element with symbol Mo and atomic number 42. The name is from Neo-Latin molybdaenum, from Ancient Greek Μόλυβδος molybdos, meaning lead, since its ores were confused with lead ores. Molybdenum minerals have been known throughout history, but the element was discovered (in the sense of differentiating it as a new entity from the mineral salts of other metals) in 1778 by Carl Wilhelm Scheele.

43

Tc

Technetium

98

Tc

Technetium

98

transition metal

Appearance: shiny gray metal

Boiling Point: 4538

Density: 11

Phase: Solid

Discovered by: Emilio Segrè

Summary: Technetium (/tɛkˈniːʃiəm/) is a chemical element with symbol Tc and atomic number 43. It is the element with the lowest atomic number in the periodic table that has no stable isotopes:every form of it is radioactive. Nearly all technetium is produced synthetically, and only minute amounts are found in nature.

44

Ru

Ruthenium

101.072

Ru

Ruthenium

101.072

transition metal

Appearance: silvery white metallic

Boiling Point: 4423

Density: 12.45

Phase: Solid

Discovered by: Karl Ernst Claus

Summary: Ruthenium is a chemical element with symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals.

45

Rh

Rhodium

102.905502

Rh

Rhodium

102.905502

transition metal

Appearance: silvery white metallic

Boiling Point: 3968

Density: 12.41

Phase: Solid

Discovered by: William Hyde Wollaston

Summary: Rhodium is a chemical element with symbol Rh and atomic number 45. It is a rare, silvery-white, hard, and chemically inert transition metal. It is a member of the platinum group.

46

Pd

Palladium

106.421

Pd

Palladium

106.421

transition metal

Appearance: silvery white

Boiling Point: 3236

Density: 12.023

Phase: Solid

Discovered by: William Hyde Wollaston

Summary: Palladium is a chemical element with symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by William Hyde Wollaston. He named it after the asteroid Pallas, which was itself named after the epithet of the Greek goddess Athena, acquired by her when she slew Pallas.

47

Ag

Silver

107.86822

Ag

Silver

107.86822

transition metal

Appearance: lustrous white metal

Boiling Point: 2435

Density: 10.49

Phase: Solid

Discovered by: unknown, before 5000 BC

Summary: Silver is a chemical element with symbol Ag (Greek:άργυρος árguros, Latin:argentum, both from the Indo-European root *h₂erǵ- for "grey" or "shining") and atomic number 47. A soft, white, lustrous transition metal, it possesses the highest electrical conductivity, thermal conductivity and reflectivity of any metal. The metal occurs naturally in its pure, free form (native silver), as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite.

48

Cd

Cadmium

112.4144

Cd

Cadmium

112.4144

transition metal

Appearance: silvery bluish-gray metallic

Boiling Point: 1040

Density: 8.65

Phase: Solid

Discovered by: Karl Samuel Leberecht Hermann

Named by: Isotopes of cadmium

Summary: Cadmium is a chemical element with symbol Cd and atomic number 48. This soft, bluish-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it prefers oxidation state +2 in most of its compounds and like mercury it shows a low melting point compared to transition metals.

49

In

Indium

114.8181

In

Indium

114.8181

post-transition metal

Appearance: silvery lustrous gray

Boiling Point: 2345

Density: 7.31

Phase: Solid

Discovered by: Ferdinand Reich

Summary: Indium is a chemical element with symbol In and atomic number 49. It is a post-transition metallic element that is rare in Earth's crust. The metal is very soft, malleable and easily fusible, with a melting point higher than sodium, but lower than lithium or tin.

50

Sn

Tin

118.7107

Sn

Tin

118.7107

post-transition metal

Appearance: silvery-white (beta, β) or gray (alpha, α)

Boiling Point: 2875

Density: 7.365

Phase: Solid

Discovered by: unknown, before 3500 BC

Summary: Tin is a chemical element with the symbol Sn (for Latin:stannum) and atomic number 50. It is a main group metal in group 14 of the periodic table. Tin shows a chemical similarity to both neighboring group-14 elements, germanium and lead, and has two possible oxidation states, +2 and the slightly more stable +4.

51

Sb

Antimony

121.7601

Sb

Antimony

121.7601

metalloid

Appearance: silvery lustrous gray

Boiling Point: 1908

Density: 6.697

Phase: Solid

Discovered by: unknown, before 3000 BC

Summary: Antimony is a chemical element with symbol Sb (from Latin:stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient times and were used for cosmetics; metallic antimony was also known, but it was erroneously identified as lead upon its discovery.

52

Te

Tellurium

127.603

Te

Tellurium

127.603

metalloid

Boiling Point: 1261

Density: 6.24

Phase: Solid

Discovered by: Franz-Joseph Müller von Reichenstein

Summary: Tellurium is a chemical element with symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur.

53

I

Iodine

126.904473

I

Iodine

126.904473

diatomic nonmetal

Appearance: lustrous metallic gray, violet as a gas

Boiling Point: 457.4

Density: 4.933

Phase: Solid

Discovered by: Bernard Courtois

Summary: Iodine is a chemical element with symbol I and atomic number 53. The name is from Greek ἰοειδής ioeidēs, meaning violet or purple, due to the color of iodine vapor. Iodine and its compounds are primarily used in nutrition, and industrially in the production of acetic acid and certain polymers.

54

Xe

Xenon

131.2936

Xe

Xenon

131.2936

noble gas

Appearance: colorless gas, exhibiting a blue glow when placed in a high voltage electric field

Boiling Point: 165.051

Density: 5.894

Phase: Gas

Discovered by: William Ramsay

Summary: Xenon is a chemical element with symbol Xe and atomic number 54. It is a colorless, dense, odorless noble gas, that occurs in the Earth's atmosphere in trace amounts. Although generally unreactive, xenon can undergo a few chemical reactions such as the formation of xenon hexafluoroplatinate, the first noble gas compound to be synthesized.

55

Cs

Cesium

132.905451966

Cs

Cesium

132.905451966

alkali metal

Appearance: silvery gold

Boiling Point: 944

Density: 1.93

Phase: Solid

Discovered by: Robert Bunsen

Summary: Caesium or cesium is a chemical element with symbol Cs and atomic number 55. It is a soft, silvery-gold alkali metal with a melting point of 28 °C (82 °F), which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium is an alkali metal and has physical and chemical properties similar to those of rubidium and potassium.

56

Ba

Barium

137.3277

Ba

Barium

137.3277

alkaline earth metal

Boiling Point: 2118

Density: 3.51

Phase: Solid

Discovered by: Carl Wilhelm Scheele

Summary: Barium is a chemical element with symbol Ba and atomic number 56. It is the fifth element in Group 2, a soft silvery metallic alkaline earth metal. Because of its high chemical reactivity barium is never found in nature as a free element.

57-71

72

Hf

Hafnium

178.492

Hf

Hafnium

178.492

transition metal

Appearance: steel gray

Boiling Point: 4876

Density: 13.31

Phase: Solid

Discovered by: Dirk Coster

Summary: Hafnium is a chemical element with symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1923, making it the penultimate stable element to be discovered (rhenium was identified two years later).

73

Ta

Tantalum

180.947882

Ta

Tantalum

180.947882

transition metal

Appearance: gray blue

Boiling Point: 5731

Density: 16.69

Phase: Solid

Discovered by: Anders Gustaf Ekeberg

Summary: Tantalum is a chemical element with symbol Ta and atomic number 73. Previously known as tantalium, its name comes from Tantalus, an antihero from Greek mythology. Tantalum is a rare, hard, blue-gray, lustrous transition metal that is highly corrosion-resistant.

74

W

Tungsten

183.841

W

Tungsten

183.841

transition metal

Appearance: grayish white, lustrous

Boiling Point: 6203

Density: 19.25

Phase: Solid

Discovered by: Carl Wilhelm Scheele

Summary: Tungsten, also known as wolfram, is a chemical element with symbol W and atomic number 74. The word tungsten comes from the Swedish language tung sten, which directly translates to heavy stone. Its name in Swedish is volfram, however, in order to distinguish it from scheelite, which in Swedish is alternatively named tungsten.

75

Re

Rhenium

186.2071

Re

Rhenium

186.2071

transition metal

Appearance: silvery-grayish

Boiling Point: 5869

Density: 21.02

Phase: Solid

Discovered by: Masataka Ogawa

Named by: Walter Noddack

Summary: Rhenium is a chemical element with symbol Re and atomic number 75. It is a silvery-white, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one of the rarest elements in the Earth's crust.

76

Os

Osmium

190.233

Os

Osmium

190.233

transition metal

Appearance: silvery, blue cast

Boiling Point: 5285

Density: 22.59

Phase: Solid

Discovered by: Smithson Tennant

Summary: Osmium (from Greek osme (ὀσμή) meaning "smell") is a chemical element with symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, mostly in platinum ores. Osmium is the densest naturally occurring element, with a density of 22.59 g/cm3.

77

Ir

Iridium

192.2173

Ir

Iridium

192.2173

transition metal

Appearance: silvery white

Boiling Point: 4403

Density: 22.56

Phase: Solid

Discovered by: Smithson Tennant

Summary: Iridium is a chemical element with symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, iridium is generally credited with being the second densest element (after osmium) based on measured density, although calculations involving the space lattices of the elements show that iridium is denser. It is also the most corrosion-resistant metal, even at temperatures as high as 2000 °C. Although only certain molten salts and halogens are corrosive to solid iridium, finely divided iridium dust is much more reactive and can be flammable.

78

Pt

Platinum

195.0849

Pt

Platinum

195.0849

transition metal

Appearance: silvery white

Boiling Point: 4098

Density: 21.45

Phase: Solid

Discovered by: Antonio de Ulloa

Summary: Platinum is a chemical element with symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, gray-white transition metal. Its name is derived from the Spanish term platina, which is literally translated into "little silver".

79

Au

Gold

196.9665695

Au

Gold

196.9665695

transition metal

Appearance: metallic yellow

Boiling Point: 3243

Density: 19.3

Phase: Solid

Discovered by: Middle East

Summary: Gold is a chemical element with symbol Au (from Latin:aurum) and atomic number 79. In its purest form, it is a bright, slightly reddish yellow, dense, soft, malleable and ductile metal. Chemically, gold is a transition metal and a group 11 element.

80

Hg

Mercury

200.5923

Hg

Mercury

200.5923

transition metal

Appearance: silvery

Boiling Point: 629.88

Density: 13.534

Phase: Liquid

Discovered by: unknown, before 2000 BCE

Summary: Mercury is a chemical element with symbol Hg and atomic number 80. It is commonly known as quicksilver and was formerly named hydrargyrum (/haɪˈdrɑːrdʒərəm/). A heavy, silvery d-block element, mercury is the only metallic element that is liquid at standard conditions for temperature and pressure; the only other element that is liquid under these conditions is bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature.

81

Tl

Thallium

204.38

Tl

Thallium

204.38

post-transition metal

Appearance: silvery white

Boiling Point: 1746

Density: 11.85

Phase: Solid

Discovered by: William Crookes

Summary: Thallium is a chemical element with symbol Tl and atomic number 81. This soft gray post-transition metal is not found free in nature. When isolated, it resembles tin, but discolors when exposed to air.

82

Pb

Lead

207.21

Pb

Lead

207.21

post-transition metal

Appearance: metallic gray

Boiling Point: 2022

Density: 11.34

Phase: Solid

Discovered by: Middle East

Summary: Lead (/lɛd/) is a chemical element in the carbon group with symbol Pb (from Latin:plumbum) and atomic number 82. Lead is a soft, malleable and heavy post-transition metal. Metallic lead has a bluish-white color after being freshly cut, but it soon tarnishes to a dull grayish color when exposed to air.

83

Bi

Bismuth

208.980401

Bi

Bismuth

208.980401

post-transition metal

Appearance: lustrous silver

Boiling Point: 1837

Density: 9.78

Phase: Solid

Discovered by: Claude François Geoffroy

Summary: Bismuth is a chemical element with symbol Bi and atomic number 83. Bismuth, a pentavalent post-transition metal, chemically resembles arsenic and antimony. Elemental bismuth may occur naturally, although its sulfide and oxide form important commercial ores.

84

Po

Polonium

209

Po

Polonium

209

post-transition metal

Appearance: silvery

Boiling Point: 1235

Density: 9.196

Phase: Solid

Discovered by: Pierre Curie

Summary: Polonium is a chemical element with symbol Po and atomic number 84, discovered in 1898 by Marie Curie and Pierre Curie. A rare and highly radioactive element with no stable isotopes, polonium is chemically similar to bismuth and tellurium, and it occurs in uranium ores. Applications of polonium are few.

85

At

Astatine

210

At

Astatine

210

metalloid

Appearance: unknown, probably metallic

Boiling Point: 610

Density: 6.35

Phase: Solid

Discovered by: Dale R. Corson

Summary: Astatine is a very rare radioactive chemical element with the chemical symbol At and atomic number 85. It occurs on Earth as the decay product of various heavier elements. All its isotopes are short-lived; the most stable is astatine-210, with a half-life of 8.1 hours.

86

Rn

Radon

222

Rn

Radon

222

noble gas

Appearance: colorless gas, occasionally glows green or red in discharge tubes

Boiling Point: 211.5

Density: 9.73

Phase: Gas

Discovered by: Friedrich Ernst Dorn

Summary: Radon is a chemical element with symbol Rn and atomic number 86. It is a radioactive, colorless, odorless, tasteless noble gas, occurring naturally as a decay product of radium. Its most stable isotope, 222Rn, has a half-life of 3.8 days.

87

Fr

Francium

223

Fr

Francium

223

alkali metal

Boiling Point: 950

Density: 1.87

Phase: Solid

Discovered by: Marguerite Perey

Summary: Francium is a chemical element with symbol Fr and atomic number 87. It used to be known as eka-caesium and actinium K. It is the second-least electronegative element, behind only caesium. Francium is a highly radioactive metal that decays into astatine, radium, and radon.

88

Ra

Radium

226

Ra

Radium

226

alkaline earth metal

Appearance: silvery white metallic

Boiling Point: 2010

Density: 5.5

Phase: Solid

Discovered by: Pierre Curie

Summary: Radium is a chemical element with symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is almost colorless, but it readily combines with nitrogen (rather than oxygen) on exposure to air, forming a black surface layer of radium nitride (Ra3N2).

89-103

104

Rf

Rutherfordium

267

Rf

Rutherfordium

267

transition metal

Boiling Point: 5800

Density: 23.2

Phase: Solid

Discovered by: Joint Institute for Nuclear Research

Summary: Rutherfordium is a chemical element with symbol Rf and atomic number 104, named in honor of physicist Ernest Rutherford. It is a synthetic element (an element that can be created in a laboratory but is not found in nature) and radioactive; the most stable known isotope, 267Rf, has a half-life of approximately 1.3 hours. In the periodic table of the elements, it is a d - block element and the second of the fourth - row transition elements.

105

Db

Dubnium

268

Db

Dubnium

268

transition metal

Density: 29.3

Phase: Solid

Discovered by: Joint Institute for Nuclear Research

Summary: Dubnium is a chemical element with symbol Db and atomic number 105. It is named after the town of Dubna in Russia (north of Moscow), where it was first produced. It is a synthetic element (an element that can be created in a laboratory but is not found in nature) and radioactive; the most stable known isotope, dubnium-268, has a half-life of approximately 28 hours.

106

Sg

Seaborgium

269

Sg

Seaborgium

269

transition metal

Density: 35

Phase: Solid

Discovered by: Lawrence Berkeley National Laboratory

Summary: Seaborgium is a synthetic element with symbol Sg and atomic number 106. Its most stable isotope 271Sg has a half-life of 1.9 minutes. A more recently discovered isotope 269Sg has a potentially slightly longer half-life (ca.

107

Bh

Bohrium

270

Bh

Bohrium

270

transition metal

Density: 37.1

Phase: Solid

Discovered by: Gesellschaft für Schwerionenforschung

Summary: Bohrium is a chemical element with symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. It is a synthetic element (an element that can be created in a laboratory but is not found in nature) and radioactive; the most stable known isotope, 270Bh, has a half-life of approximately 61 seconds.

108

Hs

Hassium

269

Hs

Hassium

269

transition metal

Density: 40.7

Phase: Solid

Discovered by: Gesellschaft für Schwerionenforschung

Summary: Hassium is a chemical element with symbol Hs and atomic number 108, named after the German state of Hesse. It is a synthetic element (an element that can be created in a laboratory but is not found in nature) and radioactive; the most stable known isotope, 269Hs, has a half-life of approximately 9.7 seconds, although an unconfirmed metastable state, 277mHs, may have a longer half-life of about 130 seconds. More than 100 atoms of hassium have been synthesized to date.

109

Mt

Meitnerium

278

Mt

Meitnerium

278

unknown, probably transition metal

Density: 37.4

Phase: Solid

Discovered by: Gesellschaft für Schwerionenforschung

Summary: Meitnerium is a chemical element with symbol Mt and atomic number 109. It is an extremely radioactive synthetic element (an element not found in nature that can be created in a laboratory). The most stable known isotope, meitnerium-278, has a half-life of 7.6 seconds.

110

Ds

Darmstadtium

281

Ds

Darmstadtium

281

unknown, probably transition metal

Density: 34.8

Phase: Solid

Discovered by: Gesellschaft für Schwerionenforschung

Summary: Darmstadtium is a chemical element with symbol Ds and atomic number 110. It is an extremely radioactive synthetic element. The most stable known isotope, darmstadtium-281, has a half-life of approximately 10 seconds.

111

Rg

Roentgenium

282

Rg

Roentgenium

282

unknown, probably transition metal

Density: 28.7

Phase: Solid

Discovered by: Gesellschaft für Schwerionenforschung

Summary: Roentgenium is a chemical element with symbol Rg and atomic number 111. It is an extremely radioactive synthetic element (an element that can be created in a laboratory but is not found in nature); the most stable known isotope, roentgenium-282, has a half-life of 2.1 minutes. Roentgenium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany.

112

Cn

Copernicium

285

Cn

Copernicium

285

transition metal

Boiling Point: 3570

Density: 23.7

Phase: Gas

Discovered by: Gesellschaft für Schwerionenforschung

Summary: Copernicium is a chemical element with symbol Cn and atomic number 112. It is an extremely radioactive synthetic element that can only be created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of approximately 29 seconds, but it is possible that this copernicium isotope may have a nuclear isomer with a longer half-life, 8.9 min.

113

Nh

Nihonium

286

Nh

Nihonium

286

unknown, probably transition metal

Boiling Point: 1430

Density: 16

Phase: Solid

Discovered by: RIKEN

Summary: Nihonium is a chemical element with atomic number 113. It has a symbol Nh. It is a synthetic element (an element that can be created in a laboratory but is not found in nature) and is extremely radioactive; its most stable known isotope, nihonium-286, has a half-life of 20 seconds.

114

Fl

Flerovium

289

Fl

Flerovium

289

post-transition metal

Boiling Point: 420

Density: 14

Phase: Solid

Discovered by: Joint Institute for Nuclear Research

Summary: Flerovium is a superheavy artificial chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. The element is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubna, Russia, where the element was discovered in 1998.

115

Mc

Moscovium

289

Mc

Moscovium

289

unknown, probably post-transition metal

Boiling Point: 1400

Density: 13.5

Phase: Solid

Discovered by: Joint Institute for Nuclear Research

Summary: Moscovium is the name of a synthetic superheavy element in the periodic table that has the symbol Mc and has the atomic number 115. It is an extremely radioactive element; its most stable known isotope, moscovium-289, has a half-life of only 220 milliseconds. It is also known as eka-bismuth or simply element 115.

116

Lv

Livermorium

293

Lv

Livermorium

293

unknown, probably post-transition metal

Boiling Point: 1085

Density: 12.9

Phase: Solid

Discovered by: Joint Institute for Nuclear Research

Summary: Livermorium is a synthetic superheavy element with symbol Lv and atomic number 116. It is an extremely radioactive element that has only been created in the laboratory and has not been observed in nature. The element is named after the Lawrence Livermore National Laboratory in the United States, which collaborated with the Joint Institute for Nuclear Research in Dubna, Russia to discover livermorium in 2000.

117

Ts

Tennessine

294

Ts

Tennessine

294

unknown, probably metalloid

Boiling Point: 883

Density: 7.17

Phase: Solid

Discovered by: Joint Institute for Nuclear Research

Summary: Tennessine is a superheavy artificial chemical element with an atomic number of 117 and a symbol of Ts. Also known as eka-astatine or element 117, it is the second-heaviest known element and penultimate element of the 7th period of the periodic table. As of 2016, fifteen tennessine atoms have been observed:six when it was first synthesized in 2010, seven in 2012, and two in 2014.

118

Og

Oganesson

294

Og

Oganesson

294

unknown, predicted to be noble gas

Boiling Point: 350

Density: 4.95

Phase: Solid

Discovered by: Joint Institute for Nuclear Research

Summary: Oganesson is IUPAC's name for the transactinide element with the atomic number 118 and element symbol Og. It is also known as eka-radon or element 118, and on the periodic table of the elements it is a p-block element and the last one of the 7th period. Oganesson is currently the only synthetic member of group 18.

119

Uue

Ununennium

315

Uue

Ununennium

315

unknown, but predicted to be an alkali metal

Boiling Point: 630

Density: 3

Phase: Solid

Discovered by: GSI Helmholtz Centre for Heavy Ion Research

Summary: Ununennium, also known as eka-francium or simply element 119, is the hypothetical chemical element with symbol Uue and atomic number 119. Ununennium and Uue are the temporary systematic IUPAC name and symbol respectively, until a permanent name is decided upon. In the periodic table of the elements, it is expected to be an s-block element, an alkali metal, and the first element in the eighth period.

57

La

Lanthanum

138.905477

La

Lanthanum

138.905477

lanthanide

Appearance: silvery white

Boiling Point: 3737

Density: 6.162

Phase: Solid

Discovered by: Carl Gustaf Mosander

Summary: Lanthanum is a soft, ductile, silvery-white metallic chemical element with symbol La and atomic number 57. It tarnishes rapidly when exposed to air and is soft enough to be cut with a knife. It gave its name to the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table:it is also sometimes considered the first element of the 6th-period transition metals.

58

Ce

Cerium

140.1161

Ce

Cerium

140.1161

lanthanide

Appearance: silvery white

Boiling Point: 3716

Density: 6.77

Phase: Solid

Discovered by: Martin Heinrich Klaproth

Summary: Cerium is a chemical element with symbol Ce and atomic number 58. It is a soft, silvery, ductile metal which easily oxidizes in air. Cerium was named after the dwarf planet Ceres (itself named after the Roman goddess of agriculture).

59

Pr

Praseodymium

140.907662

Pr

Praseodymium

140.907662

lanthanide

Appearance: grayish white

Boiling Point: 3403

Density: 6.77

Phase: Solid

Discovered by: Carl Auer von Welsbach

Summary: Praseodymium is a chemical element with symbol Pr and atomic number 59. Praseodymium is a soft, silvery, malleable and ductile metal in the lanthanide group. It is valued for its magnetic, electrical, chemical, and optical properties.

60

Nd

Neodymium

144.2423

Nd

Neodymium

144.2423

lanthanide

Appearance: silvery white

Boiling Point: 3347

Density: 7.01

Phase: Solid

Discovered by: Carl Auer von Welsbach

Summary: Neodymium is a chemical element with symbol Nd and atomic number 60. It is a soft silvery metal that tarnishes in air. Neodymium was discovered in 1885 by the Austrian chemist Carl Auer von Welsbach.

61

Pm

Promethium

145

Pm

Promethium

145

lanthanide

Appearance: metallic

Boiling Point: 3273

Density: 7.26

Phase: Solid

Discovered by: Chien Shiung Wu

Named by: Isotopes of promethium

Summary: Promethium, originally prometheum, is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is one of only two such elements that are followed in the periodic table by elements with stable forms, a distinction shared with technetium. Chemically, promethium is a lanthanide, which forms salts when combined with other elements.

62

Sm

Samarium

150.362

Sm

Samarium

150.362

lanthanide

Appearance: silvery white

Boiling Point: 2173

Density: 7.52

Phase: Solid

Discovered by: Lecoq de Boisbaudran

Summary: Samarium is a chemical element with symbol Sm and atomic number 62. It is a moderately hard silvery metal that readily oxidizes in air. Being a typical member of the lanthanide series, samarium usually assumes the oxidation state +3.

63

Eu

Europium

151.9641

Eu

Europium

151.9641

lanthanide

Boiling Point: 1802

Density: 5.264

Phase: Solid

Discovered by: Eugène-Anatole Demarçay

Summary: Europium is a chemical element with symbol Eu and atomic number 63. It was isolated in 1901 and is named after the continent of Europe. It is a moderately hard, silvery metal which readily oxidizes in air and water.

64

Gd

Gadolinium

157.253

Gd

Gadolinium

157.253

lanthanide

Appearance: silvery white

Boiling Point: 3273

Density: 7.9

Phase: Solid

Discovered by: Jean Charles Galissard de Marignac

Summary: Gadolinium is a chemical element with symbol Gd and atomic number 64. It is a silvery-white, malleable and ductile rare-earth metal. It is found in nature only in combined (salt) form.

65

Tb

Terbium

158.925352

Tb

Terbium

158.925352

lanthanide

Appearance: silvery white

Boiling Point: 3396

Density: 8.23

Phase: Solid

Discovered by: Carl Gustaf Mosander

Summary: Terbium is a chemical element with symbol Tb and atomic number 65. It is a silvery-white rare earth metal that is malleable, ductile and soft enough to be cut with a knife. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.

66

Dy

Dysprosium

162.5001

Dy

Dysprosium

162.5001

lanthanide

Appearance: silvery white

Boiling Point: 2840

Density: 8.54

Phase: Solid

Discovered by: Lecoq de Boisbaudran

Summary: Dysprosium is a chemical element with the symbol Dy and atomic number 66. It is a rare earth element with a metallic silver luster. Dysprosium is never found in nature as a free element, though it is found in various minerals, such as xenotime.

67

Ho

Holmium

164.930332

Ho

Holmium

164.930332

lanthanide

Appearance: silvery white

Boiling Point: 2873

Density: 8.79

Phase: Solid

Discovered by: Marc Delafontaine

Summary: Holmium is a chemical element with symbol Ho and atomic number 67. Part of the lanthanide series, holmium is a rare earth element. Holmium was discovered by Swedish chemist Per Theodor Cleve.

68

Er

Erbium

167.2593

Er

Erbium

167.2593

lanthanide

Appearance: silvery white

Boiling Point: 3141

Density: 9.066

Phase: Solid

Discovered by: Carl Gustaf Mosander

Summary: Erbium is a chemical element in the lanthanide series, with symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements on Earth. As such, it is a rare earth element which is associated with several other rare elements in the mineral gadolinite from Ytterby in Sweden, where yttrium, ytterbium, and terbium were discovered.

69

Tm

Thulium

168.934222

Tm

Thulium

168.934222

lanthanide

Appearance: silvery gray

Boiling Point: 2223

Density: 9.32

Phase: Solid

Discovered by: Per Teodor Cleve

Summary: Thulium is a chemical element with symbol Tm and atomic number 69. It is the thirteenth and antepenultimate (third-last) element in the lanthanide series. Like the other lanthanides, the most common oxidation state is +3, seen in its oxide, halides and other compounds.

70

Yb

Ytterbium

173.0451

Yb

Ytterbium

173.0451

lanthanide

Boiling Point: 1469

Density: 6.9

Phase: Solid

Discovered by: Jean Charles Galissard de Marignac

Summary: Ytterbium is a chemical element with symbol Yb and atomic number 70. It is the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the other lanthanides, its most common oxidation state is +3, seen in its oxide, halides and other compounds.

71

Lu

Lutetium

174.96681

Lu

Lutetium

174.96681

lanthanide

Appearance: silvery white

Boiling Point: 3675

Density: 9.841

Phase: Solid

Discovered by: Georges Urbain

Summary: Lutetium is a chemical element with symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry, but not in moist air. It is considered the first element of the 6th-period transition metals and the last element in the lanthanide series, and is traditionally counted among the rare earths.

89

Ac

Actinium

227

Ac

Actinium

227

actinide

Boiling Point: 3500

Density: 10

Phase: Solid

Discovered by: Friedrich Oskar Giesel

Summary: Actinium is a radioactive chemical element with symbol Ac (not to be confused with the abbreviation for an acetyl group) and atomic number 89, which was discovered in 1899. It was the first non-primordial radioactive element to be isolated. Polonium, radium and radon were observed before actinium, but they were not isolated until 1902.

90

Th

Thorium

232.03774

Th

Thorium

232.03774

actinide

Appearance: silvery, often with black tarnish

Boiling Point: 5061

Density: 11.724

Phase: Solid

Discovered by: Jöns Jakob Berzelius

Summary: Thorium is a chemical element with symbol Th and atomic number 90. A radioactive actinide metal, thorium is one of only two significantly radioactive elements that still occur naturally in large quantities as a primordial element (the other being uranium). It was discovered in 1828 by the Norwegian Reverend and amateur mineralogist Morten Thrane Esmark and identified by the Swedish chemist Jöns Jakob Berzelius, who named it after Thor, the Norse god of thunder.

91

Pa

Protactinium

231.035882

Pa

Protactinium

231.035882

actinide

Appearance: bright, silvery metallic luster

Boiling Point: 4300

Density: 15.37

Phase: Solid

Discovered by: William Crookes

Named by: Otto Hahn

Summary: Protactinium is a chemical element with symbol Pa and atomic number 91. It is a dense, silvery-gray metal which readily reacts with oxygen, water vapor and inorganic acids. It forms various chemical compounds where protactinium is usually present in the oxidation state +5, but can also assume +4 and even +2 or +3 states.

92

U

Uranium

238.028913

U

Uranium

238.028913

actinide

Boiling Point: 4404

Density: 19.1

Phase: Solid

Discovered by: Martin Heinrich Klaproth

Summary: Uranium is a chemical element with symbol U and atomic number 92. It is a silvery-white metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons.

93

Np

Neptunium

237

Np

Neptunium

237

actinide

Appearance: silvery metallic

Boiling Point: 4447

Density: 20.45

Phase: Solid

Discovered by: Edwin McMillan

Summary: Neptunium is a chemical element with symbol Np and atomic number 93. A radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after the planet Uranus, led to it being named after Neptune, the next planet beyond Uranus.

94

Pu

Plutonium

244

Pu

Plutonium

244

actinide

Appearance: silvery white, tarnishing to dark gray in air

Boiling Point: 3505

Density: 19.816

Phase: Solid

Discovered by: Glenn T. Seaborg

Summary: Plutonium is a transuranic radioactive chemical element with symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states.

95

Am

Americium

243

Am

Americium

243

actinide

Appearance: silvery white

Boiling Point: 2880

Density: 12

Phase: Solid

Discovered by: Glenn T. Seaborg

Summary: Americium is a radioactive transuranic chemical element with symbol Am and atomic number 95. This member of the actinide series is located in the periodic table under the lanthanide element europium, and thus by analogy was named after the Americas. Americium was first produced in 1944 by the group of Glenn T.Seaborg from Berkeley, California, at the metallurgical laboratory of University of Chicago.

96

Cm

Curium

247

Cm

Curium

247

actinide

Appearance: silvery metallic, glows purple in the dark

Boiling Point: 3383

Density: 13.51

Phase: Solid

Discovered by: Glenn T. Seaborg

Summary: Curium is a transuranic radioactive chemical element with symbol Cm and atomic number 96. This element of the actinide series was named after Marie and Pierre Curie – both were known for their research on radioactivity. Curium was first intentionally produced and identified in July 1944 by the group of Glenn T. Seaborg at the University of California, Berkeley.

97

Bk

Berkelium

247

Bk

Berkelium

247

actinide

Appearance: silvery

Boiling Point: 2900

Density: 14.78

Phase: Solid

Discovered by: Lawrence Berkeley National Laboratory

Summary: Berkelium is a transuranic radioactive chemical element with symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the University of California Radiation Laboratory where it was discovered in December 1949.

98

Cf

Californium

251

Cf

Californium

251

actinide

Appearance: silvery

Boiling Point: 1743

Density: 15.1

Phase: Solid

Discovered by: Lawrence Berkeley National Laboratory

Summary: Californium is a radioactive metallic chemical element with symbol Cf and atomic number 98. The element was first made in 1950 at the University of California Radiation Laboratory in Berkeley, by bombarding curium with alpha particles (helium-4 ions). It is an actinide element, the sixth transuranium element to be synthesized, and has the second-highest atomic mass of all the elements that have been produced in amounts large enough to see with the unaided eye (after einsteinium).

99

Es

Einsteinium

252

Es

Einsteinium

252

actinide

Appearance: silver-colored

Boiling Point: 1269

Density: 8.84

Phase: Solid

Discovered by: Lawrence Berkeley National Laboratory

Summary: Einsteinium is a synthetic element with symbol Es and atomic number 99. It is the seventh transuranic element, and an actinide. Einsteinium was discovered as a component of the debris of the first hydrogen bomb explosion in 1952, and named after Albert Einstein.

100

Fm

Fermium

257

Fm

Fermium

257

actinide

Density: null

Phase: Solid

Discovered by: Lawrence Berkeley National Laboratory

Summary: Fermium is a synthetic element with symbol Fm and atomic number 100. It is a member of the actinide series. It is the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not yet been prepared.

101

Md

Mendelevium

258

Md

Mendelevium

258

actinide

Density: null

Phase: Solid

Discovered by: Lawrence Berkeley National Laboratory

Summary: Mendelevium is a synthetic element with chemical symbol Md (formerly Mv) and atomic number 101. A metallic radioactive transuranic element in the actinide series, it is the first element that currently cannot be produced in macroscopic quantities through neutron bombardment of lighter elements. It is the antepenultimate actinide and the ninth transuranic element.

102

No

Nobelium

259

No

Nobelium

259

actinide

Density: null

Phase: Solid

Discovered by: Joint Institute for Nuclear Research

Summary: Nobelium is a synthetic chemical element with symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penultimate member of the actinide series.

103

Lr

Lawrencium

266

Lr

Lawrencium

266

actinide

Density: null

Phase: Solid

Discovered by: Lawrence Berkeley National Laboratory

Summary: Lawrencium is a synthetic chemical element with chemical symbol Lr (formerly Lw) and atomic number 103. It is named in honor of Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radioactive metal, lawrencium is the eleventh transuranic element and is also the final member of the actinide series.